Guided Locally Linear Embedding

نویسندگان

  • Babak Alipanahi
  • Ali Ghodsi
چکیده

Nonlinear dimensionality reduction is the problem of retrieving a low-dimensional representation of a manifold that is embedded in a high-dimensional observation space. Locally Linear Embedding (LLE), a prominent dimensionality reduction technique is an unsupervised algorithm; as such, it is not possible to guide it toward modes of variability that may be of particular interest. This paper proposes a supervised variation of LLE. Similar to LLE, it retrieves a low-dimensional global coordinate system that faithfully represents the embedded manifold. Unlike LLE, however, it produces an embedding in which predefined modes of variation are preserved. This can improve several supervised learning tasks including pattern recognition, regression, and data visualization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Growing Locally Linear Embedding for Manifold Learning

Locally linear embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. This paper proposes a new manifold learning method, which is based on locally linear embedding and growing neural gas and is termed growing locally linear embedding (GLLE). GLLE overcomes the major limitations of the original locally linear emb...

متن کامل

Locally Linear Embedded Eigenspace Analysis

The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...

متن کامل

The embedding method to obtain the solution of fuzzy linear systems

In this paper, we investigate the general fuzzy linear system of equations.  The  main aim of this paper is based on the embedding approach. We find the necessary and sufficient conditions for the existence of fuzzy solution of the mentioned systems.  Finally, Numerical examples are presented to more illustration of the proposed model.

متن کامل

Image Contrast Gain Control by Linear Neighbourhood Embedding

In this paper, we present a method that adaptively computes a contrast gain control map for the image through the use of a novel technique termed linear neighborhood embedding (LNE) which first computes a locally linear relation for each pixel and its neighbors and then embeds these relations globally in the gain map image. We borrow the " think globally fit locally " concept and computational ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011